ECEN 3730-
PCB Design,
Connor Sorrell

PCB Design Board 4 Report: Instrument Droid

1. Introduction

This board served as a final test for almost everything we learned throughout the course. On this board,
the goal was to extend my Golden Arduino, a fully functional Atmega328P-based microcontroller board,
with a standalone measurement system to characterize the Thevenin resistance of any voltage source.
Board 4 brought together a 4 layer board stackup, real-time data acquisition capabilities, custom
firmware, all attached to a custom built Arduino Uno.

Additionally, this project combined everything from MOSFET current sourcing to DAC driven pulsing, as
well as ADC based voltage sensing, I2C communication, and more. Beyond simple hardware & PCB
engineering, this board tested debugging methods, smart design decisions, integration of firmware, and
physical assembly on a scale I have not attempted yet.

After countless hours of debugging, the resulting board was a fully operational instrument. It acts as an
Arduino-but with better performance, signal integrity, and noise mitigation. It also produces clean,
accurate thevenin resistance measurements of many different voltage sources.

2. Design Goals

Build a 4-layer board with strong design choices in mind
Measurement system to calculate Thevenin resistance

e Integrate an ATmega328P microcontroller to mimic an Arduino Uno

e Include a DAC (MCP4725) and ADC (ADS1115) to handle analog output and measurement

e Use a MOSFET + op-amp constant current source controlled by DAC output

e Add smart indicators: RGB LED + buzzer to represent feedback/real-time measurement results

Measure a variety of power sources and export data for analysis in Excel
All power control & data acquisition handled by the onboard microcontroller

3. System Architecture

w us

3] A vOUTA plVOUT OPAME
VKA +
v p—

2ol VG
o e

— VoD

vis
SCFRIT TS

SCL 1
AN iy aND

H — Eed s
armn

1IMHz

G

Testpoints @D @n

Figure 1: Annotated schematic in Altium
The system can be broken down into:

e DAC Section: MCP4725 generates the voltage setpoint that controls current draw

e Op-Amp + MOSFET: Amplifies DAC signal to control AO3400A gate

e Slammer Circuit: draws current through the load while measuring the voltage drop.

e ADC Section: ADS1115 reads the load voltage and sense resistor voltage

e AtMega328P: controls everything via [2C, generates pulses, firmware for math calculations

e Indicators: RGB LED and buzzer provide user feedback during operation

The overarching goal of the board is to safely stress test power sources and characterize them under
varying loads, while also providing LED / Buzzer feedback to show the results of the tests in real-time.

4. 4-Layer Stackup and PCB Layout

OBEE OBEEC 0
fooo OIS

9

00100,

010010

0;0:0/0,

010101010 01010,

010010

0:0:010,

0.0.0/0

Q000000 ON0DOOODO0OO00D
ojojojololololoolololelolotolol0]0) .

Q
Q
(o]
Q.
(0]
(°]
(o]
(o]
(o]
(o]
o
Q
(o}
(o]

0JOJOI0I0ION-

0/0;0/0] ©i0;0/0]

CXCC
OILOC

O

IR
OO

QL0

°

‘sese sooo
TP_ 16HHz

Connor || - Instrumen\
Sorrell X =, Dro1d

Figures 4 and 5: Show the final PCB Layout, both front and back

Layer Assignment:

e Top Layer — Signal (components + high speed critical routing)
e Layer 2 — Solid Ground Plane
e Layer 3 — Additional Routing (mostly 5V, 3.3V and Vin signals)

e Bottom Layer — Solid Ground plane

Layout decisions were driven by signal integrity and testability:

e C(Crystal and CH340G were traced for minimal loop area and trace symmetry (as close together as
possible)

e Decoupling capacitors placed as close as possible to each power pin
e Power rails (VCC, AVCC, USB 5V) routed thick (20mm)

e Ferrite bead isolates AVCC from digital switching noise

e Continuous return plane present

e Test points labeled and accessible

Ground and signal vias were strategically placed to ensure all high-speed signals had close adjacent return
paths. Decoupling caps were placed within mm of their respective IC power pins. More than just
connecting components, I focused on managing power delivery in a smart and efficient way to optimize
board performance and keep measurements stable and accurate.

5. Assembly and Fabrication

|c173‘"5 “m..
ol oy ==

L
b CJ_
i

8289866A_Y61.250416 o
g v , e=SCL omMon ECEN_3e0d
L Sorrell 'y 10 g N Q I[)rllsotlrdl-m"am

82898667 761.230416 ey = - ECEN_3730
Connor " ._ Instrument

T Drmd
Sorrell o

Figure 6: Shows unassembled, bare bone board Figure 7: Shows board fully assembled

Assembly was done by hand with a combination of hot air reflow and fine-tip soldering. Particular care
was taken with:

e The Op Amp, which was by far the smallest SMD part I’ve soldered. It required me to be
extremely precise and use a sharp iron tip
AtMega, CH340, other IC’s with a lot of pins. For these, I used the hot air gun

e Debugging the CH340 later taught me just how fragile these connections can be.

Functional Verification

6.1 Baseline sanity checks for Board power, USB communication, and AtMega

2.000us! 00s

e [Figures 8 and 9: Confirm proper power delivery on the board and LDO is working as expected to
convert 5V to 3.3V

S00mvs 2 £0.00ns/

12.08BMHz

e Figures 10 and 11: Confirm both the 12MHz and 16MHz crystals are working properly

- The 5V and 3.3V working as intended mean that the PDN, for the most part, works as
intended. The 16MHz crystal confirms a successful bootload, and a working 12MHz
crystal is a strong hint towards successful USB communication.

6.2 USB mini check

200.0ns/ 534.0ns

Figure 12: Shows the USB D+ and D- lines during communication. The signals toggle at 3MHz
as expected and showcase a 3.3v peak to peak swing as expected.

- This verifies the USB section of the board is working properly and that the USB interface is alive
and communicating

6.3 Bootloader Flashing & Uploading Blink Sketch

Board: "Arduino Ung” >

Port: "COM5" 4

- After burning the arduino and connecting the USB, I can detect the arduino on my
computer, proving full Arduino compatibility. This is the defining test of the board’s
functionality.

- Ithen uploaded a simple sketch on Arduino which is designed to blink pin 13 at 5 Hz.

100.0ms/ 0.0s Auto

Figure 13: Shows the output of pin 13 after uploading the blink sketch.

- This shows that the ATmega328P is not only bootloaded but also fully programmable. It
closes the loop between schematic, layout, assembly, USB communication, and software
upload.

6.4 DAC Output

Meas

Pk-Pk(1)

Max(1):

Figure 14: Shows DAC output

- Confirms the DAC is producing a series of short voltage pulses, with each pulse
corresponding to a commanded step increase in current through the MOSFET and sense
resistor

6.5 Smart Indicators

!.J;{)')',l“

Y \l)(_)(ll‘.)i
|
)|

Q0O O

' 00 0|

Figure 15: Shows daisy-chained LED 'S illuminating green to represent a flat & constant
R _thevenin

- Additionally, the buzzer on the board plays a “Dun dun dun” sound when the resistance is
dropping, and once the resistance is flat and leveled off, it plays a mario tune. (Shown to TA)

e LEDs light up when current is flowing
e Buzzer gives audible pulse at each DAC activation
- The Thevenin characterizer and Indicator subsystems worked together flawlessly. The

droid board manages the current ramps, measures voltage drop, computes resistance, and
then alerts the user via LED & Buzzer

7. Thevenin Characterization Results

Some examples of voltage sources tested:

5V Wall Adapter
9v Wall Adapter

12V Wall Adapter

Data was logged using Arduino Serial Plotter and exported to Excel.

5V Adapter:

1, 8.208, 5.2475, 5.2117, 4.3573

1, 8.209, 5.2478, 5.2121, 4.3512

2, 16.951, 5.2483, 5.1937, 3.2214 5

3, 25.419, 5.2486, 5.1835, 2.5597

4, 33.276, 5.2493, 5.1877, 1.8522 45 °

5, 41.327, 5.2497, 5.1901, 1.4407 4

€, 50.146, 5.2501, 5.1931, 1.1366

7, 58.930, 5.2503, 5.2030, 0.8025 3.5

8, €7.289, 5.2510, 5.2112, 0.5914 5 L

9, 75.125, 5.2513, 5.2216, 0.3963

10, 82.190, 5.2523, 5.2215, 0.3702 25 L

11, 92.017, 5.2524, 5.2204, 0.3480

12, 100.670, 5.2527, 5.21%0, 0.3348 2 °

13, 108.883, 5.2531, 5.2179, 0.3226 15 °

14, 116.816, 5.2536, 5.2178, 0.3065 °

15, 124.934, 5.2540, 5.2168, 0.2973 1 °

16, 133.704, 5.2534, 5.2149, 0.2876 05 L] oo o o
17, 142.278, 5.2535, 5.2145, 0.2746 ® ® 0 0 0 0 0 o
18, 150.501, 5.2541, 5.2147, 0.2618 0

19, 158.383, 5.2539, 5.2152, 0.2445 0 20 40 &0 &0 100 120 140 160
20, 166.334, 5.2541, 5.2148, 0.2366

done

Thevenin Resistance: 0.2366 Q

From the data, we can make some observations. At low currents, (<20mA), the thevenin
resistance is ~4 Ohms, and as current increases, the thevenin resistance sharply drops and flattens
out around ~80mA. This behavior shows that the adapter has a relatively low output impedance
once it is sourcing steady current, but is less effective at maintaining steady voltage under tiny
loads

In the context of the smart instrument droid, the LED’s display a flashing red during the
non-linear behavior of the thevenin resistance. Once the resistance value flattens out, the LED’s
display a constant green light.

180

9V Adapter:

13,
20,

8.212,
16.546, 9
25.419, 9
33.281, 9
41.329, 9.
50.144, 9
58.927, 9
€7.291, 9
75.136, 9
83.193,
$2.013,

100.
1o08.
1lle.
124.
133.
142.
150.
158.
lee.

done

673,
899,
834,
939,
713,
283,
521,
391,
334,

9.3353,

.3355,
.3354,
.3355,

.3357,
3357,
.33sg,
.3358,
9.3359,
9.3360,
.3260, 9
.3361, 9
.3361, 9
.3363, 9
3363, 9.
5
5
5
5

9
9
9
9
9.
]
9
9
9

.3364,
.33265,
.3266,
.3264,

9.3269,
9.3179, 1
9.3094, 1
9.3012, 1

3355, 9.2830, 1.
9 1
9 1
S 1
9 1

.2845,
.2756,
_2672,
.2597,
5.2520,
5.2433,
.2351,
.2273,
.2219,
.2139,
2047,
L1561,
.1872,
.1793,
.1710,

02

.02
.01
.01
L0130

1.0280
.03
.02
.03

43
438
17
98
06
95
as

1.0084
1.0080

1
0
0
0
0.
0
0
0
0

.Doz25
.9951
.9775
.97%6

5844

.9861
.59522
.9929
-9941

Thevenin Resistance: 0.9941 Q

12V Adapter:

14,
15,
16,
17,
18,
19,
20,

g.013
17.67
25.9%6
33.94
42 .25
52.11
60.13
68.15
Te.17
84.1
92.2
100.
108
11le.
124
136.
144.
150.
160.
1le8

done

Thevenin Resistance: 0.0094 Q

, 11.7866,
5, 11.
2, 11.
1, 11.
4, 11.
3, 11.
g, 11.
0, 11.
5, 11.
88, 11.7866,
13, 11.7866,
11.
11.
11.
11.
11.
11.
11.
11.
11.

225,

.250,

263,

.288,

180,
188,
637,
363,

.387,

7866,
7866,
7866,
7866,
7866,
7866,
7866,
7866,
7866,

11.78€6,
7866, 11.
7866, 11.
7866, 11.
7866, 11.
7866, 11.
7866, 11.
7066, 11.
7866, 11.

11

11

11.

11

11

7866,
7866,
7866,
7866,
7866,
7858,
7862,
7850,
11.7866,
11.7850,
11.

o
o]
o]
o]
o
0
o]
o]

7858,

.7850,
11.

7850,

.7850,
11.

7840,
7850,

7838,
11.

7835,

.7850,

.0
.0
.0
-0
.0
.0
.0
-0
0.
0.

o
o
o
0
0.
o
o
o
o

0.0017

008
005
004
003
003
132
059
207
gooz
0171
.007%
.014¢
.013¢
0127
0188
.0109
.0183
.01%¢
.0094

12

1.15

11

0.95

09

0.3

0.25

0.2

0.15

0.1

0.05

0

20

20

40

40

60

80

100

120

140

160

The onboard measurement instrument system not only worked, but also was effective in delivering
useful insight such as the internal thevenin resistance of the power source, all by just letting the

droid sweep current and collect data. It is useful to know the thevenin equivalent and sourcing

characteristics of different sources in order to predict how something will act under a load.

Knowing a power supply's limits, stability and performance under stress is extremely important in

building an efficient & reliable system.

180

8. Challenges & Debugging

This board was less forgiving than earlier projects due to the 4-layer stack, which meant that not
everything would be debuggable. Because of this, I added an abundance of test points which drastically
improved and quickened my troubleshooting. Because of the fine pitch parts and how small I designed my
board to be, I had several issues.

e A GND via ended up unintentionally solder-bridging to a nearby signal pin. This created a short
on my board that took hours of probing and DMM use to find & fix

e Moving too quickly, I soldered the screw terminal block backwards.

e Initially, the board wouldn’t show up in Arduino IDE. After finding a poor solder joint on the
CH340 USB chip, I fixed it allowing for USB detection

e Initial soldering of Op Amp was incorrect which caused the MOSFET to fully turn on and dump
too much current into 1 ohm sense resistor, burning it

e Because [minimized the board size, many components were crammed edge to edge. Any attempt
to fix or replace one part meant desoldering multiple surrounding parts

e | forgot to label both the current range switch (1 Q vs 10 Q) and the input source selector (adapter
vs terminal)

9. Conclusion
This was the most complex board I’ve designed, as well as the most rewarding. It brought together:

e Multilayer layout design
Functionality of entire Arduino Uno microcontroller

e Analog and digital integration
e Firmware
e Real time testing

e Data capture and analysis

Takeaways:

- 4 layer board successfully built (signal/gnd/signal/gnd) provided good signal integrity,
clean return paths, and relatively easy routing

- Principles of return vias; by placing a GND return via right next to each signal via, I
ensured that return currents could follow their natural low impedance path

- Now understand the Thevenin source characterizer and how to pulse current through a
load, measure voltage drop, and compute resistance in real time

- Firmware coordinated DAC stepping, ADC sampling, and resistance calculation, turning
the board into its own instrument for collecting data

- Gained more practical experience searching for useful information within datasheets
- Designing, coding, and debugging this system deepened my understanding of how
hardware, firmware, etc. all combine into one

Appendix: Arduino Code (LED_BuzzerPCB.ino)

1 // vrm characterizer board

2 #include <Wire.h>

3 #include <Adafruit_MCP4725.h>
4 #include <Adafruit_ADS1X15.h>
5 #include <Adafruit_NeoPixel.h>
6

7 #define LED_PIN 3

8 #define NUMPIXELS 5

9 #define BUZZER PIN 2

10

11 Adafruit NeoPixel pixels(NUMPIXELS, LED PIN, NEO GRB + NEO KHZ800);
12

13 Adafruit_ADS1115 ads;

14 Adafruit_MCP4725 dac;

15

16 float R sense = 10.@; //current sensor

17 long itime on msec = 100; //on time for taking measurements

18 long itime off msec = itime on msec * 1@; // time to cool off

19 int iCounter off = @; // counter for number of samples off

20 int iCounter_on = @; // counter for number of samples on

21 float v_divider = 47e@.e / 14768.8; //voltage divider on the VRM
22 float DAC_ADU per_v = 4895.8 / 5.8; //conversion from volts to ADU
23 int V_DAC_ADU; // the value in ADU to output on the DAC

24 int I_DAC_ADU; // the current we want to output

25 float I_A = @.e; //the current we want to output, in amps

26 long itime_stop usec; // this is the stop time for each loop

27 float ADC_V_per ADU = ©.125 * 1e-3; // the voltage of one bit on the gain of 1 scale
28 float V_VRM on_v; // the value of the VRM voltage

29 float V_VRM off v; // the value of the VRM voltage

380 float I_sense on_A; // the current through the sense resistor

31 float I_sense off A; // the current through the sense resistor

32 float I_max A = ©.25; // max current to set for

33 int npts = 20; //number of points to measure

34 float I_step A = I_max_A / npts; //step current change
35 float I_load A; // the measured current load

36 float V_VRM thevenin_v;

37 float V_VRM_loaded_v;

38 float R_thevenin;

39 int i;

49

41 void func_meas_off()

a2 |

43 dac.setvoltage(®e, false); //sets the output current

44 iCounter_off = @; //starting the current counter

45 V_VRM off_v = @.@; //initialize the VRM voltage averager

46 I_sense off A = @.0; // initialize the current averager

47 itime_stop_usec = micros() + itime_off_msec * 1e0@; // stop time
48 while (micros() <= itime_stop_usec)

a9 {

50 V_VRM_off_v = ads.readADC_Differential_@ 1() * ADC_V_per_ADU / v_divider + V_VRM_off_v;
51 I_sense off A = ads.readADC_Differential 2 3() * ADC_V per_ADU / R_sense + I_sense_off A; iCounter_ off++
52 }

53 V_VRM off v = V. VRM off v / iCounter off;

54 I_sense_off_A = I_sense_off_A / iCounter_off;

55 // serial.print(iCounter off);Serial.print(", ");

56 // serial.print(I_sense off A * 1e3, 4); Serial.print(", ");

57 // Serial.println(V_VRM off_v, 4);

58}

59

60 void func_meas_on()

61 |

62 //now turn on the current
63 I DAC_ADU = I_A * R_sense * DAC_ADU per v;

63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
=l]
91
92
93
94

1ee
1e1
102
103
1e4
105
1e6
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

I_DAC_ADU = I_A * R_sense * DAC_ADU_per_v;
dac.setVoltage(I_DAC_ADU, false); //sets the output current
iCounter_on = 8;

V_VRM on_v = @.0; //initialize the VRM voltage averager
I_sense_on_A = ©.80; // initialize the current averager

itime stop usec = micros() + itime on _msec * 1000; // stop time
while (micros() <= itime_stop_usec)

V_VRM on_v = ads.readADC Differential @ 1() * ADC_V per ADU / v_divider + V_VRM on_v;
I _sense on A = ads.readADC_Differential 2 3() * ADC_V_per ADU / R_sense + I_sense on_A; iCounter on++;
}
dac.setVoltage(®, false); //sets the output current to zero
V_VRM on_v = V_VRM on_v / iCounter_on;
I sense on A = I sense on A / iCounter_on;
// Serial.print(iCounter_on);Serial.print(", ™);
// Serial.print(I_sense_on_A * 1e3, 4);Serial.print(”, ");
// serial.println(V_VRM on_ v, 4);

int melody[] = {262, 196, 196, 220, 196, @, 247, 262};

int noteDurations[] = {2@e, 200, 200, 260, 200, 200, 200, 200};

void playMario() {

}

for (int thisNote = @; thishote < 8; thisNote++) {
int noteDuration = noteDurations[thisNote];
tone(BUZZER_PIN, melody[thisNote], noteDuration);
delay(noteDuration * 1.3); // wait for note to finish + gap
noTone (BUZZER_PIN);

¥

void playDunDunbun() {

int dunNotes[] = {11, 110, 8@}; // Lower for drama
for (int i = 8; 1 < 3; i++) {
tone(BUZZER_PIN, dunNotes[i], 30@);
for (int j = @; j < MUMPIXELS; j++) pixels.setPixelColor(j, pixels.cColor(255, @, @)); // RED
pixels.show();
delay(300);
noTone (BUZZER_PIN);
for (int j = @; j < MUMPIXELS; j++) pixels.setPixelcolor(j, pixels.cColor(e, @, @)); // OFF
pixels.show();
delay(160);

void setup()

{

Serial.begin(2eeeeee); dac.begin(ex6e); // address is either ox6e, ox61, 0x62,0x63, Ox64 or BX65
dac.setVoltage(®, false); //sets the output current to @ initially

// ads.setGain(GAIN_TWOTHIRDS); // 2/3x gain +/- 6.144V 1 bit = 3mv @.1875mv (default)
ads.setGain(GAIN ONE); // 1x gain +/- 4.096V 1 bit = 2mV 0.125mV

// ads.setGain(GAIN TwW0); // 2x gain +/- 2.e48V 1 bit = 1mv @.@625mV

/! ads.setGain(GAIN_FOUR); // 4x gain +/- 1.024v 1 bit = @.5mV ©.03125mV

// ads.setGain(GAIN_EIGHT); // 8x gain +/- ©.512v 1 bit = @.25mV 0.015625mVv

// ads.setGain(GAIN SIXTEEN); // 16x gain +/- ©.256V 1 bit = 6.125mV ©.8078125mV

ads.begin(); // note- you can put the address of the ADS111 here if needed
ads.setDataRate(RATE_ADS1115_8605PS);// sets the ADS1115 for higher speed

pinMode(BUZZER_PTIN, OUTPUT);

//pixels.begin();

for (int j = @; j < NUMPIXELS; j++) pixels.setPixelColor(j, pixels.Color(e, 255, @)); // GREEN
//pixels.show();

128
129 void loop()

120 {
131 float R _prev = -1;
132 bool songPlayed = false;
133 bool dunPlayed = false;
134
135 for (i = 1; i <= npts; i+)
126 {
137 I A=1%*T1stepA;
138 dac.setvoltage(e, false); // disable DAC
139 func_meas_off();
140 func_meas_on();
141 dac.setvoltage(e, false);
142
143 I load A = I sense on A - I sense off Aj
144 V_VRM_thevenin_v = V_VRM_off_v;
145 V_VRM loaded v = V_VRM on v;
146 R_thevenin = (V_VRM_thevenin_v - V_VRM_loaded_v) / I_load_A;
147
148 // --- ALERT 1: Thevenin < 1 or flat ---
149 if ((R thevenin < 1.8 || abs(R thevenin - R prev) < ©.2) & IsongPlayed) Iﬂ
150 for (int j = @; j < NUMPIXELS; j++) pixels.setPixelColor(j, pixels.Color(®, 255, @)); // GREEN
151 pixels.show();
152 playMario();
153 songPlayed = tr‘ue_',l
154
155
156 // --- ALERT 2: sSharp drop in R_thevenin ---
157 if (R prev > @ & (R _thevenin - R prev) < -10.0 & !dunrlayed) {
158 playbunbDunbun();
156 // --- ALERT 2: Sharp drop in R thevenin ---
157 if (R_prev > @ && (R_thevenin - R_prev) < -10.8 &% !dunPlayed) {
158 playDunDunbun();
159 dunPlayed = true;
160 }
161
162 R_prev = R_thevenin;
163
164 // --- output serial for debugging ---
165 Serial.print(i);
166 Serial.print(", ");
167 Serial.print(I_load A * 1e3, 3);
168 Sserial.print(", ");
169 Serial.print(V_VRM thevenin v, 4);
17@ Sserial.print(", ");
171 Serial.print(V_VRM loaded v, 4);
172 Serial.print(", ");
173 Serial.println(R_thevenin, 4);
174
175 if (v_VRM_loaded_v < ©.75 * V_VRM_thevenin_v) break;
176 1
177
178 // Clear LEDs after scan
179 for (int j = @; j < NUMPIXELS; j++) pixels.setPixelColor(j, pixels.Color(e, @, @));
180 pixels.show();
181 noTone(BUZZER_PIN);
182 Serial.println("done");
183 delay(30000);

184 }

	PCB Design Board 4 Report: Instrument Droid
	1. Introduction
	2. Design Goals
	3. System Architecture
	Layer Assignment:

	5. Assembly and Fabrication
	Functional Verification
	6.1 Baseline sanity checks for Board power, USB communication, and AtMega
	6.2 USB mini check
	6.3 Bootloader Flashing & Uploading Blink Sketch
	6.5 Smart Indicators

	
	
	7. Thevenin Characterization Results
	8. Challenges & Debugging
	
	
	
	9. Conclusion

